Minggu, 04 Januari 2015

KUMPULAN CATATAN DARI TEMAN-TEMAN :

PRAKTISNYA:
Ada satu cara sederhana untuk menghitung besarnya kapasitas pendinginan AC (dalam satuan Btu/hr

atau pk) yang dibutuhkan untuk mengkondisikan suatu ruangan. Langkah pertama adalah menghitung

luasan ruang yang akan dipasangi AC. Selanjutnya kalikan dengan standar panas dalam ruangan

seluas 1 meter persegi, 500 Btu/hr. Misal, ruangan berukuran 3×4 meter. Untuk menghitung AC

yang dibutuhkan: luas ruangan (3×4 m2)x500 Btu/hr=6.000 Btu/hr.

Biasanya satuan daya AC yang dikenal di pasaran adalah pk. Untuk mengetahuinya, konversikan

saja hitungan tadi ke dalam satuan pk. Untuk mengetahuinya konversikan saja hitungan tadi ke

dalam satuan pk. Caranya, 1/2 pk setara dengan 5.000 Btu/hr, 3/4 pk setara 7.000 Btu/hr, 1 pk

setara 9.000 Btu/hr, 1,5 pk setara 12.000 Btu/hr, 2 pk setara 18.000 Btu/hr dan 2,5 pk setara

dengan 24.000 Btu/hr.

Yang perlu diperhatikan, kapasitas AC harus lebih tinggi dari panas ruangan yang harus

“ditangani.” Misal hasil hitungan diperoleh kebutuhan 6.000 Btu/hr, berarti kapasitas AC yang

dibutuhkan 7.000 Btu/hr atau setara 3/4 pk.

Catatan:
Kapasitas AC berdasarkan PK:
AC ½ PK = ± 5.000 BTU/h
AC ¾ PK = ± 7.000 BTU/h
AC 1 PK = ± 9.000 BTU/h
AC 1½ PK = ±12.000 BTU/h
AC 2 PK = ±18.000 BTU/h

1 Meter = 3,28 Feet


============================================================================

UNTUK LEBIH DETIL BISA GUNAKAN RUMUS INI:

(W x H x I x L x E) / 60 = kebutuhan BTU
W = Panjang Ruang (dalam feet)
H = Tinggi Ruang (dalam feet)
I = Nilai 10 jika ruang berinsulasi (berada di lantai bawah, atau berhimpit dengan ruang lain).
Nilai 18 jika ruang tidak berinsulasi (di lantai atas).
L = Lebar Ruang (dalam feet)
E = Nilai 16 jika dinding terpanjang menghadap utara;
       nilai 17 jika menghadap timur;
      Nilai 18 jika menghadap selatan; dan
      nilai 20 jika menghadap barat.

1 Meter = 3,28 Feet

Kapasitas AC berdasarkan PK:
AC ½ PK = ± 5.000 BTU/h
AC ¾ PK = ± 7.000 BTU/h
AC 1 PK = ± 9.000 BTU/h
AC 1½ PK = ±12.000 BTU/h
AC 2 PK = ±18.000 BTU/h

Contoh Hitungan:
Ruang berukuran 9m x 4m atau (29 kaki x 13 kaki), tinggi ruangan 3m (10 kaki) tidak

berinsulasi, dinding panjang menghadap ke timur. Kebutuhan BTU = (29 x 13 x 18 x 10 x 17) / 60

= 19.227 BTU alias cukup dengan AC 2 PK.

==================================================================================

Kamis, 27 Desember 2012

Catatan Kecil - 1



Reff: dari wikipedia:



Air conditioner equipment power in the U.S. is often described in terms of "tons of refrigeration". A "ton of refrigeration" is approximately equal to the cooling power of one short ton (2000 pounds or 907 kilograms) of ice melting in a 24-hour period. The value is defined as 12,000 BTU per hour, or 3517 watts.[14] Residential central air systems are usually from 1 to 5 tons (3 to 20 kilowatts (kW)) in capacity.
This is different from the electrical power used by the AC unit. In fact, they have an efficiency rating called SEER (Seasonal Enery Efficiency Rating) for AC units.
From wikipedia on SEER:
The SEER rating of a unit is the cooling output in Btu (British thermal unit) during a typical cooling-season divided by the total electric energy input in watt-hours during the same period. The higher the unit's SEER rating the more energy efficient it is.

For example, consider a 5,000-British-thermal-unit-per-hour (1,500 W) air-conditioning unit, with a SEER of 10 BTU/W·h, operating for a total of 1000 hours during an annual cooling season (e.g., 8 hours per day for 125 days).
The annual total cooling output would be:

5000 BTU/h × 8 h/day × 125 days/year = 5,000,000 BTU/year
With a SEER of 10, the annual electrical energy usage would be about:

5,000,000 BTU/year / 10 BTU/W·h = 500,000 W·h/year
The average power usage may also be calculated more simply by:

Average power = (BTU/h) / (SEER) = 5000 / 10 = 500 W
If your electricity cost is 20¢/kW·h, then your cost per operating hour is:

0.5 kW * 20¢/kW·h = 10¢/h















Compression Work 
Compression work can expressed as
W = h q                                                           (1)
where 
W = compression work (Btu min)
h = heat of compression (Btu/lb)
q = refrigerant circulated (lb/min)
Compression Horsepower
Compression horsepower can be expressed as
P = W / 42.4                                       (2)
where 
P = compression power (hp)
W = compression work (Btu min)
Alternatively 
P = c / (42.4 COP)                            (2b)
where 
P = compression power (hp)
c = capacity (Btu/min)
COP = coefficient of performance
Compression horsepower per Ton
p = 4.715 / COP                                (2c)
where 
p = compressor horsepower per Ton (hp/Ton)
COP = coefficient of performance

COP - Coefficient of Performance
COP = NRE / h                                             (3)
where 
COP = Coefficient of Performance
NRE = Net Refrigeration Effect (Btu/lb)
h = heat of compression (Btu/lb)
Net Refrigeration Effect 
Net refrigeration effect can be expressed as
NRE = hl - he                                                 (4)
where 
NRE = Net Refrigeration Effect (Btu/lb)
hl = enthalpy of vapor leaving evaporator (Btu/lb)
he = enthalpy of vapor entering evaporator (Btu/lb)
Capacity
c = q NRE                                                                  (5)
where 
c = capacity (Btu/min)
q = refrigerant circulated (lb/min) 
NRE = Net Refrigeration Effect (Btu/lb)
Compressor Displacement
d = c v / NRE                                                 (6)
where 
d = compressor displacement (ft3/min)
c = capacity (Btu/min)
v = volume of gas entering compressor (ft3/lb)
NRE = Net Refrigeration Effect (Btu/lb)
Heat of Compression 
h = hlc - hec                                          (7)
where 
h = heat of compression (Btu/lb)
hlc = enthalpy of vapor leaving compressor (Btu/lb)
hec = enthalpy of vapor entering compressor (Btu/lb)
Volumetric Efficiency 
μ = 100 wa / wt                                   (8)
where 
μ = volumetric efficiency
wa = actual weight of refrigerant
wt = theoretical weight of refrigerant
Compression Ratio
CR = ph / ps                            (9)
where 
CR = compression rate
 ph = head pressure absolute (psia) 
ps = suction pressure, absolute (psia)  

  
The chiller efficiency depends on the energy consumed. Absorption chillers are rated in fuel consumption per ton cooling. Electric motor driven chillers are rated in kilowatts per ton cooling.
·         KW/ton = 12 / EER
·         KW/ton = 12 / (COP x 3.412)
·         COP = EER / 3.412
·         COP = 12 / (KW/ton) / 3.412
·         EER = 12 / KW/ton
·         EER = COP x 3.412
If a chillers efficiency is rated at 1 KW/ton,
·         COP = 3.5
·         EER = 12
Cooling Load in - kW/ton
The term kW/ton is commonly used for larger commercial and industrial air-conditioning, heat pump and refrigeration systems.
The term is defined as the ratio of energy consumption in kW to the rate of heat removal in tons at the rated condition. The lower the kW/ton the more efficient the system.
kW/ton = Pc / Er         (1)
where
Pc = energy consumption (kW)
Coefficient of Performance - COP
The Coefficient of Performance - COP - is the basic parameter used to report efficiency of refrigerant based systems.
The Coefficient of Performance - COP - is the ratio between useful energy acquired and energy applied and can be expressed as
COP = Eu / Ea         (2)
where
COP = coefficient of performance
Eu = useful energy acquired (btu in imperial units)
Ea = energy applied (btu in imperial units)
COP can be used to define both cooling efficiencies or heating efficiencies as for a heat pumps.
·         Cooling -  COP is defined as the ratio of of heat removal to energy input to the compressor
·         Heating - COP is defined as the ratio of heat delivered to energy input to the compressor
COP can be used to define the efficiency at single standard or non-standard rated conditions, or as a weighted average of  seasonal conditions. The term may or may not include the energy consumption of auxiliary systems such as indoor or outdoor fans, chilled water pumps, or cooling tower systems.
·         higher COP - more efficient system
COP can be treated as an efficiency where COP of 2.00 = 200% efficiency. For unitary heat pumps, ratings at two standard outdoor temperatures of 47oF and 17oF (8.3oC and -8.3oC) are typically used.
Energy Efficiency Ratio - EER
The Energy Efficiency Ratio - EER - is a term generally used to define cooling efficiencies of unitary air-conditioning and heat pump systems.
The efficiency is determined at a single rated condition specified by an appropriate equipment standard and is defined as the ratio of net cooling capacity - or heat removed in Btu/h - to the total input rate of electric power applied - in Watts. The units of EER areBtu/Wh.
EER = Ec / Pa                                    (3)
where
EER = energy efficient ratio (Btu/Wh)
Ec = net cooling capacity (Btu/h)
Pa = applied electrical power (Watts)
This efficiency term typically includes the energy requirement of auxiliary systems such as the indoor and outdoor fans.
·         higher EER -  more efficient system



Rabu, 07 November 2012

SMART & HEALTH ROOM

SMART & HEALTH ROOM
 oleh: Rahadi H - YC1IRR



NAMA PROYEK      : PROTOTYPE SMART ROOM , INTELLIGENT BUILDING
LOKASI                     :
PEMILIK                   :
PELAKSANA            :
NILAI PROYEK       : US$ .......................
MULAI TANGGAL  :
SELESAI TANGGAL:



I. PROTOTYPE ROOM:
Ukuran ruangan prototype yaitu:
Panjang           : 4,5 m
Lebar               : 2,5 m
Tinggi              : 2,8 m
Denah Ruang Prototype terlampir


II. KEINGINAN OWNER:
1. AMAN
2. PINTAR
3. NYAMAN
4. SEHAT


III. RINCIAN DAN BAHASAN KEINGINAN:

1. AMAN:
Sudah ditangani peralatan fire protection system

2. PINTAR (SMART):
Otomatisasi semua peralatan pendukung aktifitas didalam Smart Room,
dengan tidak mengabaikan Keamanan, Kenyamanan, Kesehatan serta Hemat Energi.


3. NYAMAN:
a. Nyaman Secara Tata Suara atau Akustik
b. Nyaman secara Kondisi Udara
c. Nyaman secara Penerangan atau Pencahayaan


4. SEHAT:
a.  Sehat dengan nilai RH sesuai dengan standard kesehatan.
b. Sehat dengan Deteksi Partikel Debu (Dust)
c. Sehat dengan Deteksi Kadar Gas-gas yang membahayakan diantaranya: CO, N2O , NH3




1. AMAN:
Sudah ditangani peralatan fire protection system yang terdapat pada gedung.


2. PINTAR (SMART):

a. Validasi orang yang akan memasuki ruangan, dengan menggunakan ID Card
b. Catat dan hitung orang yang masuk ruangan
c. Aktifkan fasilitas yang ada didalam ruangan, diantaranya :
   Lampu penerangan, Pendingin ruangan (AC) , LCD Monitor,
   Announcer ,Pengatur RH, Pengatur Krei, dll
d. Catat orang yang terakhir keluar ruangan .
e. Matikan fasilitas yang ada didalam ruangan.


3. NYAMAN:

a. Nyaman Secara Tata Suara atau Akustik

Standard Waktu Dengung (Reverberation time) , untuk ruangan seminar / konferensi : 0,7 detik s/d 1 detik.
Untuk ruang kerja : 0,6 detik s/d 0,8 detik.
Sound reflection , beda waktu tunda antara suara langsung dengan suara pantul : 15 milidetik s/d 35 milidetik.


b. Nyaman secara Kondisi Udara

Beban Pendinginan standard pada ruangan untuk kerja di gedung perkantoran dengan nilai pendekatan :
20 m2 perlu 1 TR (Ton Refrigerasi) dengan tinggi 3 m , temperatur kerja 22oC s/d 25oC pada 1 atm
Luas lantai 4,5 x 2,5 = 11,25 m2
Jadi perlu = 11,25 / 20  = 0,56 TR.
Pendingin udara yang digunakan Daikin VRV 2 , hampir setara dengan Split Duct dengan nilai efisiensi pendinginan kW / TR = 1,3
Jadi diperlukan daya untuk pendingin (AC) sebesar 0,56 x 1,3 = 0,73 kW


c. Nyaman secara Penerangan atau Pencahayaan

Standar kenyamanan untuk ruang kerja , Terang Cahaya Erata-rata = 350 lux
Bidang kerja = luas lantai = 11,25 m2

Fluks total = 11,25 x 350 = 3.937,5 Lumen  (kekuatan Cahaya yang bekerja pada bidang kerja)

Batasan Hemat Energi untuk Ruang kerja yaitu Daya maksimum/m2 = 15 Watt/m2
Jadi untuk ruangan dengan luas 11,25 m2  , maka Daya maksimum = 11,5 x 15 = 168,75 Watt.

Sekarang sudah banyak lampu-lampu hemat energi ,jadi bisa dipilih lampu yang sangat hemat energi tergantung dari biaya yang disediakan, semakin hemat semakin mahal harganya.
Ambil contoh : philips 11 Watt (extrabright) mempunyai kekuatan cahaya sebesar 900 Lumen
Jumlah lampu yang diperlukan = 3.937,5 Lumen / 900 Lumen = 4,37  = 5 lampu
Daya yang di perlukan 11 Watt x 5 = 55 Watt. Lebih Hemat lagi bila menggunakan Lampu LED walaupun harganya lebih mahal 9 s/d 10 kalinya.


4. SEHAT:

a.  Sehat dengan nilai RH sesuai dengan standard kesehatan.

Standar kesehatan nilai RH ,Kelembaban Relatif berada pada daerah 40% s/d 60%, dimana tidak ada kehidupan Bakteri, Virus dan Jamur.

Untuk mengatur nilai RH dapat dilakukan dengan 2 cara yaitu:
1. Dengan mengkondisikan Supply Air ruangan selain penambahan coil pendingin ditambahkan pula coil heating (heater).
2. Dengan memasang Package Humidifier didalam ruangan, paling praktis hanya saja mengurangi volume ruangan dan perlu penataan estetika ruangan kembali.


b. Sehat dengan Deteksi Partikel Debu (Dust)

Standard Clean Room (Ruang Bersih) ISO 14644-1 General Services Administration of the US Dept of Commerce , untuk ISO 5:

Diameter [μm]
> 0,3
>0,5
>1
>5
Maks partikel/m3
10200
3520
832
29

Peralatan penghitung Partikel yang diketahui sampai saat ini ukuran partikel antara 0,3 μm s/d 5 μm
dengan kondisi kecepatan aliran udara = 0,1 cfm = 0,0027 m3/menit


c. Sehat dengan Deteksi Kadar Gas-gas yang membahayakan diantaranya: CO, NO2 , NH3

1. Konsentrasi gas CO didalam udara untuk bekerja didalam ruangan selama lebih dari 8 jam, maksimum konsetrasinya 35 ppm .
Standard OSHA (Occupational Safety and Health Administration)
ada beberapa organisasi yang mengambil nilai amannya yaitu sebesar 25 ppm

2. Konsentrasi gas NO2 didalam udara untuk bekerja didalam ruangan maksimum konsetrasinya  0,053 ppm .
National Standard , ASHRE dan US EPA.

3. Konsentrasi gas NH3 didalam udara untuk bekerja didalam ruangan maksimum konsetrasinya 25 ppm  untuk Standard WHO , sedangkan untuk Standard OSHA sebesar 55 ppm.


IV. PERALATAN PENDUKUNG PADA SMART ROOM:

Peralatan pendukung pada Smart Room agar dapat berfungsi sebagaimana yang diinginkan, terdiri dari:

  1. Pintu Masuk
  2. Lock Pintu Masuk
  3. ID Card
  4. ID Card Reader
  5. Lampu Penerangan
  6. Announcer Peringatan
  7. LCD Display
  8. Pendingin Ruangan (AC)
  9. Sensor Temperatur Ruangan
  10. Humidifier (Pengatur RH)
  11. Sensor RH
  12. Sensor Cahaya
  13. Sensor Gas CO, NO2, NH3
  14. Sensor Partikel Debu (Dust)
  15. Camera CCTV (IP Digital Camera)
  16. Peralatan Server , diluar ruangan smart room
  17. Peralatan Network ke system Control , diluar ruangan smart room
  18. Peralatan UPS , diluar ruangan smart room



V. FLOWCHART PENDUKUNG: